Combination forecast of medium and long-term electric quantity variable weight based on the time distance of prediction error
ID:27 View Protection:ATTENDEE Updated Time:2022-11-02 20:55:04 Hits:381 Oral Presentation

Start Time:2022-11-04 11:20(Asia/Shanghai)

Duration:20min

Session:S Power System and Automation » OS5Oral Session 5

Video No Permission Presentation File

Tips: Only the registered participant can access the file. Please sign in first.

Abstract
       Refined electricity forecasting is an important trend in the development of power grids. Medium and long-term electricity forecasting is generally based on months or years to predict the total electricity consumption in the next few years. This paper first introduces several commonly used forecasting methods, and then proposes a variable-weight combination forecasting model that combines the advantages of a single model, calculates the weight coefficients according to the error index to combine the prediction results of the sub-models, and proposes a method to optimize the weight distribution according to the time distance of prediction error. Aiming at the problem of poor adaptability of a single model to changes in electricity, the weights are calculated separately in different months for prediction. Finally, taking the electricity data of a certain city as an example, the prediction on the monthly time scale and the annual time scale is carried out, and the error index is calculated. The results show that the method in this paper can effectively improve the reliability of medium and long-term electricity forecasting.
Keywords
medium and long-term electricity forecast,Grey theory,Support vector machine,LSTM neural network,combined forecast
Speaker
Chuanliang Liu
Power Supply Company of State Grid Shandong Electric Power Company

Submission Author
Chuanliang Liu 国网山东省电力公司潍坊供电公司
Bingbing Chen 国网山东省电力公司潍坊供电公司
Feng Jin 国网山东省电力公司潍坊供电公司
xudong Zheng Shandong University
Submit Comment
Verify Code Change Another
All Comments
Important Date
  • Conference Date

    Nov 03

    2022

    to

    Nov 05

    2022

  • Aug 01 2022

    Draft paper submission deadline

  • Nov 04 2022

    Registration deadline

  • Nov 05 2022

    Contribution Submission Deadline

Sponsored By
Huazhong University of Science and Technology
Contact Information